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A quantum system comprising of a monochromatic electromagnetic field coupled to a SQUID ring
with sinusoidal non-linearity, is studied. A magnetostatic flux Φx is also threading the SQUID ring,
and is used to control the coupling between the two systems. It is shown that for special values of
Φx the system is strongly coupled. The time evolution of the system is studied. It is shown that
exchange of energy takes place between the two modes and that the system becomes entangled.
A second quasi-classical model that treats the electromagnetic field classically is also studied. A
comparison between the fully quantum mechanical model with the electromagnetic field initially in
a coherent state and the quasi-classical model, is made.

I. INTRODUCTION

With the SQUID ring (here taken to be a thick super-
conducting ring enclosing a single Josephson weak link
device) regarded as having potential for future quantum
technologies1,2,3,4, it is clearly of interest to consider its
interaction with an external quantum mechanical electro-
magnetic (em) field. This interest has certainly been pro-
moted by the recent experimental work on the creation
of quantum mechanical superposition states of Josephson
systems5,6,7,8, with particular emphasis on the existence
of such states in SQUID rings9,10. As with these latter
experiments, in order to investigate these states we con-
sider a monochromatic em field with frequency ωe (typ-
ically in the 0.1 to 1 THz region), coupled to a SQUID
ring oscillator with frequency ωs. In addition a magne-
tostatic flux Φx is also applied to the ring, as depicted in
figure 1. Since the primary purpose of the work reported
here is to study the full quantum mechanics of this cou-
pled system, we make the assumption that the operating
temperature (T ) is such that ~ωe ≫ kBT , ~ωs ≫ kBT
so that both the ring and field modes behave quantum
mechanically.

As we shall show, in this fully quantum mechanical de-
scription the quantum states of the em field mode plus
SQUID ring couple together strongly only under certain
circumstances, specifically around particular values of
the magnetostatic bias flux Φx. In this case, using the
bias flux as a means to control the coupling, we have
been able to reveal a whole range of interesting quantum
phenomena.

In previous work11,12,13 we dealt with the semi-classical
problem of a monochromatic microwave field coupled to
a SQUID ring containing a small capacitance weak link.
In this paper we extend our theoretical description and
treat both the ring and the field fully within a quantum
mechanical framework. We demonstrate that the numer-
ical results derived from this quantum model, in which
the em field is initially in a coherent state, compare very
well with those obtained using a semi-classical, Floquet
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FIG. 1: A SQUID ring coupled inductively to a mode of an
electromagnetic field.

theory of a SQUID ring coupled to the field. In this
there are obvious analogies to quantum optical interac-
tions in few level atoms which apply to both pair con-
densate and single electron systems14,15,16,17,18. In addi-
tion, we note that SQUID rings have a strong sinusoidal
non-linearity and it is the strength of this non-linearity,
together with its periodic nature, that leads to the quite
novel phenomena studied in this paper. This should be
compared and contrasted with the large body of work on
non-linear quantum systems in the context of quantum
optics19,20,21,22,23,24 where the non-linearity is usually a
weak polynomial non-linearity.

II. A SQUID RING COUPLED TO
NON-CLASSICAL EM FIELD

The Hamiltonian Ht for our coupled system can be
written as a sum of the energies for the field and the
ring, together with an additional term for the interaction
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energy, i.e.

Ht = He + Hs − HInt. (1)

where He and Hs are, respectively, the Hamiltonians for
the field and the ring and HInt is the interaction energy.

We can write the Hamiltonian for the SQUID ring
(weak link capacitance Cs and ring inductance Λs), in
the usual form17

Hs =
Q2

s

2Cs

+
(Φs − Φx)

2

2Λs

− ~ν cos

(

2π
Φs

Φ0

)

. (2)

where Φs, the magnetic flux threading the ring, and Qs,
the total charge across the weak link, are the conjugate
variables for the system (with the imposed commuta-
tion relation [Φs, Qs] = i~), Φx is the static (or quasi-
static) external flux applied to the ring, ~ν/2 is the ma-
trix element for pair tunnelling through the weak link
(critical current Ic = 2eν) and Φ0 = h/2e. We note
that with a characteristic frequency ωs =

(

1/
√

CsΛs

)

for the SQUID ring, there is a renormalized frequency
Ωs = ωs + 4~

2π2νΦ−2
0 C−1

s ω−1
s related to the Φ2

s term
in a Taylor expansion of the cosine in (2). Throughout
the paper we use Cs = 1 × 10−16F, Λs = 3 × 10−10H
and ~ν = 0.07Φ2

0/Λs as typical circuit parameters for a
SQUID ring in the quantum regime.

The em field can be modelled in terms of a cavity mode
using an equivalent circuit comprising a capacitance Ce

in parallel with an inductance Λe, with a (parallel) re-
sistance on resonance to define its quality factor. If we
assume this resistance to be infinite we obtain a Hamil-
tonian for the field in terms of the equivalent circuit flux
and charge operators

He =
Q2

e

2Ce

+
Φ2

e

2Λe

. (3)

where Φe and Qe are, respectively, the magnetic flux and
electric charge associated with the cavity. The field fre-
quency is ωe = 1/

√
CeΛe. For the purposes of simplicity

we use Ce = Cs throughout this paper and specify the
frequency ωe in each example. We denote as |n〉 the
eigenstates of He. In our numerical work we use a trun-
cated basis with n = 0, ..., N , where N is taken to be
much greater than the average number of photons in the
system.

The em cavity mode and the SQUID ring are coupled
together inductively with a coupling energy given by

HInt =
µ

Λs

(Φs − Φx)Φe (4)

where µ is a coupling parameter linking the em field to
the SQUID ring.

We note that by introducing a unitary translation op-
erator T = exp (−iΦxQs/~) we can write the Hamilto-
nian for the ring as

H ′
s = T

†HsT =
Q2

s

2Cs

+
Φ2

s

2Λs

− ~ν cos

(

2π
Φs + Φx

Φ0

)

(5)
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FIG. 2: Energy eigenvalues versus ϕx = Φx/Φ0 for an iso-
lated SQUID ring.

We also note that, invoking this unitary transformation,
the interaction energy becomes H ′

Int = µ

Λs

ΦsΦe whilst
the em field Hamiltonian remains unaffected. We denote
as |σ〉 the (flux-dependent) eigenstates of H ′

s . Again
in our numerical work we use a truncated basis with
σ = 0, ..., Σ, where Σ is taken to be much greater than
the average energy level in which the SQUID operates.
The first few eigenvalues (σ = 0, .....4) of H ′

s as functions
of Φx/Φ0 (= ϕx) are shown in figure 2. As can be seen,
although all the eigenvalues are Φ0 -periodic in Φx, each
displays a distinctive functional form in Φx. It will be-
come apparent in the following discussion that these func-
tional forms take on great importance in determining the
behaviour of the coupled system at particular points in
external bias flux.

In describing the coupled system, we now intro-
duce the dimensionless operators xe =

√

Ceωe/~Φe,

pe =
√

1/Ce~ωeQe, xs =
√

Csωs/~Φs and ps =
√

1/Cs~ωsQs, together with the lowering and raising op-

erators as = 1√
2

(xs + ips), a†
s = 1√

2
(xs − ips) for the

ring and ae = 1√
2

(xe + ipe), a†
e = 1√

2
(xe − ipe) for

the field. In terms of these operators the Hamiltonian
H ′

t = T
†HtT for the coupled system (see (1)) can be

rewritten in the form

H ′
t = ~ωe

(

a†
eae +

1

2

)

+ ~ωs

(

a†
sas +

1

2

)

−

~ν cos

(

2π

Φ0

√

~

Csωs

xs + 2πϕx

)

−

µ

Λs

√

~2

4CsCeωsωe

(

a†
s + as

) (

a†
e + ae

)

(6)

As an illustrative example we show in figures 3 the
computed, ϕx -dependent eigenvalues of H ′

t for (a) ωe =
ωs (with truncations N = Σ = 5) and (b) ωe = 1

10
ωs

(with truncations N = 50 and Σ = 5 ). In these fig-
ures the scaling is too small to reveal the lifting of the
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FIG. 3: (a) Energy eigenvalues versus ϕx of the SQUID ring
Hamiltonian Hs (thick lines) and the ring-field total Hamil-
tonian Ht (thin lines) with ωe = ωs. The coupling constant
µ = 1/100. The inset shows an example (arrowed) of the lift-
ing of the degeneracy of the ring-field levels when µ 6= 0. (b)
as in figure(a) but with ωe = 1

10
ωs.

degeneracy at the crossing points by the nonzero cou-
pling term (µ 6= 0). Again to illustrate, we show in the
inset of figure 3(a), but at much higher resolution, one
such computed crossing point. Here the splitting of the
crossing energies is quite apparent, these being intimately
connected to the functional form of the original SQUID
ring eigenenergies. That such crossing points have been
reported in experimental studies of Josephson weak link
circuits, particularly SQUID rings, with concomitant su-
perpositions of macroscopic states (Schrodinger cats), is
further evidence for the underlying quantum mechanical
nature of these systems6,8,9,10. It is therefore timely to
develop a full quantum treatment of SQUID ring-em field
systems, which is the purpose of the paper.

In the above we have studied the eigenproblem
H ′

t |ξn〉 = Ξn |ξn〉 using a truncated basis. We use now
these results to compute the evolution operator as

U (t) =
∑

n

|ξn〉 exp

(

− iΞnt

~

)

〈ξn| (7)

Assuming that the system at t = 0 is described by the

FIG. 4: The time averaged energy levels versus ϕx for (a)
the ring (〈Hs〉)and (b) the field (〈He〉). The coupling constant
µ = 1/100 and ωe = ωs. At t = 0 the electromagnetic field is
assumed to be in the coherent state |α = i

√
2〉 and the ring

in the energy eigenstates: σ = 0 (blue), σ = 1 (brown), σ = 2
(green) and σ = 3 (red).

density matrix ρ(0), we have calculated the density ma-
trix ρ(t) = U(t)ρ(0)U †(t) at a later time t and the re-
duced density matrices ρe = Trs (ρ), ρs = Tre (ρ). As
a measure of the accuracy of the truncation approxima-
tion we have also calculated the traces of all the density
matrices that we use. In the limit of infinite order den-
sity matrices the trace is equal to 1, while for truncated
density matrices it should be very close to 1. In all our
results the trace was greater than 0.99. Another test we
performed was to increase the cutoff point from which we
were able to ascertain that our truncation had negligible
effect.

We define the time averaged energy expectation values
H ′

s and He as (i = s, e)

〈〈Hi〉〉 = lim
T→∞

1

T

∫ T

0

Tr[ρi(t)Hi] dt (8)

where, computationally, we integrate from 0 up to
20, 000/ωs which we have found to be sufficient to ensure
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FIG. 5: The time averaged energy levels versus ϕx for (a)
the ring (〈Hs〉)and (b) the field (〈He〉). The coupling constant
µ = 1/100 and 10ωe = ωs. At t = 0 the electromagnetic field
is assumed to be in the coherent state |α = i10

√
2〉 and the

ring in the energy eigenstates: σ = 0 (solid), σ = 1 (dashed).

the convergence of the integral (8) for all the results pre-
sented in this paper. In figure 4 we display the computed,
time averaged, energy expectation values (normalized in
units of ~ωs) of H ′

s [figure 4(a)] and H ′
e [figure 4(b)].

These have been calculated over the range 0 ≤ ϕx ≤ 1
for various values of σ (= 0, 1, 2, 3), with µ = 1/100 and
ωe = ωs. In computing these results we have set the t = 0
state as |α = i

√
2〉e ⊗ |σ〉s, where |α〉e is a coherent state

of the em field (ae|α〉e = α|α〉e). As is apparent in fig-
ures 4(a) and (b), for specific values of external bias flux
ϕx [namely those corresponding to the crossing points
shown in figure 3(a)] there is a strong interaction between
the em field and the SQUID ring. As is also apparent,
this leads to an energy exchange between the components
of the system. To demonstrate how the time averaged en-
ergy levels for the ring and field depend on the ratio of ωs

to ωe, we show in figure 5(a) and (b), respectively, these
levels computed for σ = 0, 1 and, again, µ = 1/100 but
now ωe = ωs/10. In order for the energy of our initial
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FIG. 6: The time averaged energy levels versus ϕx for the ring
(〈Hs〉) and the field (〈He〉). The coupling constant µ = 1/10
and ωe = ωs. At t = 0 the electromagnetic field is assumed to
be in the coherent state |α = i

√
2〉 and the ring in the lowest

eigenstate σ = 0.

state to be equal to that used in the previous example,
here this state is chosen to be |α = i10

√
2〉e ⊗ |σ〉s. As

is to be expected, starting with σ = 0, 1 eigenstates, the
separation in ϕx between the regions of strong coupling
(energy exchange) are significantly reduced compared to
those seen in figure 4. As a further example, we show
in figure 6 the computed results for our coupled system
taking, as in figure 4, ωe = ωs but now with stronger
coupling (µ = 1/10). To make our results strictly com-
parable with those of figure 4, we use the initial state
|α = i

√
2〉e ⊗ |σ = 0〉s. Due to the stronger coupling we

can see more regions in external bias flux where energy is
exchanged between the two components of the system. In
all three sets of results (figures 4, 5 and 6) there are peaks
(both upwards and downwards) generated in the time av-
eraged energies about specific values of ϕx. These peak
regions, where energy is exchanged between the field and
the ring, correspond to quantum transitions in the ring
and in all cases demonstrate strong coupling between the
two oscillators in the system.

To illustrate the quantum mechanical effects associ-
ated with this coupling we take as an example the case
of µ = 1/10, ωe = ωs (as in figure 6) and set ϕx = 0.426
(arrowed in figure 6) at which flux bias the coupling (and
the energy exchange) between the ring and field is strong.
We assume that at t = 0 the em field is in the number
state |1〉 (a†

eae|1〉e = 1|1〉e) and the ring is in the energy
eigenstate σ = 0 (we stress that σ are eigenstates of Hs

and not of ns = a†
sas ). In figure 7, with these values

of ωs, µ and ϕx, we show the computed expectation val-
ues of the photon number 〈ne〉 = Tr(ρea

†
eae) in the field,

and 〈ns〉 = Tr(ρsa
†
sas) in the ring, as functions of time.

These results demonstrate that a strong exchange in en-
ergy takes place quasi-periodically in time between the
ring and the field, i.e. when the photon number expec-
tation value in the SQUID ring increases that in the em
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FIG. 7: The expectation values 〈ne〉 and 〈ns〉 as functions
of time for ϕx = 0.426, µ = 1/10 and ωe = ωs. At t = 0 the
electromagnetic field is assumed to be in the number state |1〉
and the ring is in the energy eigenstate σ = 0.
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FIG. 8: The entropies as a function of time for the same
system as in figure 7.

field decreases, and vice versa. We note that in order
to compare these predictions with experiment we would
need to to measure the actual power level of the em field.
We also note that with the ring-field coupling constant
known this would allow us to estimate the em power im-
pinging on the SQUID ring.

As the system evolves in time its two components-
oscillator mode and SQUID ring - become entangled
quantum mechanically. In order to quantify this en-
tanglement we use entropic quantities. For a two mode
(field-ring) system e − s this entanglement can be quan-
tified according to the expression25,26,27,28

Ies = S (ρe) + S (ρs) − S (ρ) (9)

where S (ρ) is the von-Neumann entropy given by

S (ρ) = −Tr [ρ ln (ρ)] (10)

and the entanglement entropy is positive or zero (sub-
additivity property of the entropy). In figure 8 we show

the time dependent computed entropies S (ρe), S (ρs),
and the entanglement entropy I, for the same system
as in figure 7. From these results it is quite apparent
that although at t = 0 both the field and the ring are
in a pure state, they both evolve into mixed states. Of
course, since the time evolution is unitary the joint field-
ring system is always in a pure state (S(ρ) = 0). The
results presented in figure 8 do demonstrate that the sys-
tem does become highly entangled over time although,
as can be seen, at certain times it can disentangle again.
There is no doubt that for the development of truly quan-
tum technologies, for example, quantum computing and
quantum communications, such states of entanglement
are of great importance. We note in particular, that in
some of these schemes the ability of the system to con-
trol the entanglement (as in our case) is highly desirable.
In principle, experimental verification of the entangle-
ment between the two modes could be achieved through
Bell type of inequalities. However, in the context of the
present work their exact form will require further inves-
tigation.

III. A SQUID RING COUPLED TO A
CLASSICAL EM FIELD

In previous work we treated the em field classically11

and used the Hamiltonian

Hs =
Q2

s

2Cs

+
(Φs − [Φx + ϕe sin(ωet)])

2

2Λs

−~ν cos

(

2π
Φs

Φ0

)

.

(11)
and solved the corresponding time-dependent
Schrödinger equation. Here ϕe is taken to be the
magnetic flux amplitude of the classical em field. It is
of interest to compare the quasi-classical results derived
via (11) with the fully quantum results found above
where the initial state of the em field is a coherent state.
Due to the quasi-classical nature of the coherent state
we expect some agreement between the fully quantum
results and the quasi-classical results. To furnish an
example to compare with these quantum results, we have
computed the time averaged ring energy expectation
values for the Floquet states (eigenvalues of the evolution
operator after one period of microwave evolution) as a
function of ϕx using the same value of microwave field
amplitude (ϕe = 0.41µΦ0) as in figure 4(a). Our results
are presented in figure 9. Within the computational
accuracy available, and given that we are dealing with
two different regimes of the coupled system, it is clear
that the principal transition region features match in
both models, even though the amplitudes may not be
the same.

IV. DISCUSSION

We have studied the coupling of a SQUID ring to a
single mode em field at frequencies in the sub-THz to
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FIG. 9: Time-dependent Schrödinger equation (Eq 12) cal-
culation of the time averaged ring energy levels against Φx

with µ = 1/100 , ωe = ωs and ϕe = 0.41µΦ0 Here the electro-
magnetic field is treated classically and the time-dependent
Schrödinger equation (12) is solved. The results of this figure
should be compared and contrasted with those of figure 4a.

THz range where, in general, kBT < ~ωs, ~ωe so that
the system behaves quantum mechanically. In this we
have been strongly influenced by recent discussions in
the literature on routes to quantum computing using
Josephson devices1,2,3,4 and on even more recent pub-
lication of experimental data on superposition states in
SQUID rings9,10. In the paper we have shown that our
results [for example, figure 4(a)] compare well with previ-
ous semi-classical (Floquet method) computations made
by us (figure 9 and ref 11) and have expanded this work to
calculate explicitly the photon number and entanglement
states in the coupled ring-field system. We note the rela-
tion between the results presented in this paper and pre-
vious work on em environments in thermal equilibrium
with Josephson (e.g. SQUID) circuits 29,30,31,32,33,34,35.
In our work we have assumed that the external em field
is in a particular quantum state and our results depend
on this state. As an example we have considered the
em field at t = 0 to be in a coherent state. However,
the calculations can easily be repeated for another initial
state of the field. Each initial state will, of course, yield
different results.

In addition to the em field a magnetostatic flux also
threads the SQUID ring. In this paper we have demon-
strated that for certain values of this flux strong coupling
develops at which point(s) large amounts of energy are
exchanged between the ring and the field. Future ex-
perimental probing of these energy exchanges, which is
considered again in the discussion section, would clearly
be of great interest. We have also demonstrated that en-
tanglement between the ring and field modes arises as
a natural consequence of the full quantum mechanics of
the system. As we have pointed out (section II, above),
experimental verification of such entanglements will re-
quire further work on the Bell inequalities related to these

entanglements.

In our calculations we have neglected dissipation and
have calculated the time evolution of the system us-
ing the equation ∂tρ = − (i/~) [H, ρ]. A more realistic
calculation to take into account dissipation due to the
external environment36 can be made with the equation
∂tρ = − (i/~) [H, ρ]+ f(ρ) where the f(ρ) are dissipative
terms. Numerical work to include these terms is currently
in progress.

Of general interest to experimentalists working on
(time dependent) superposition states in SQUID ring de-
vices is the problem of determining the actual em power
(or number of photons in each state of the em field) cou-
pled to the ring. Together with the frequency of the
em field, and the original eigenenergies of the ring, this
is required in order to compute the ring crossing point
splittings. In principle, this problem can be overcome
through the kind of analysis we have undertaken in this
paper, whether it be for classical em fields11 or photon
states interacting with a quantum mechanical SQUID
ring. As we have shown, it is possible to determine these
power levels accurately through following the reactive fre-
quency shift of a SQUID ring-classical (radio frequency)
resonator system, driven by an external em field, when
the ring remains adiabatically in its quantum mechanical
ground state. However, where em frequencies and/or am-
plitudes are high enough (as in this paper), so that (time
dependent) superpositions of low lying energy eigenstates
of the ring are generated, the problem becomes very
much more difficult theoretically. Nevertheless, there ap-
pear to be several routes to resolving these difficulties,
as indicated by some of our recent investigations of non-
adiabatic processes in em-driven SQUID rings 37,38. We
note that at sufficiently high em frequencies/amplitudes
multiphoton absorption and emission processes will oc-
cur between the components of the coupled system. This
may complicate the interpretation of experimental data
and will be a topic of further theoretical investigation by
us. For the future, we also note that it may be possible to
extend these experimental and theoretical techniques to
probe the details of energy exchange and entanglement
of the system presented in this paper.

There now exists a clearly defined need to create THz
technology39 for a range of applications including modern
communications. To date this technology, based on quan-
tum processes on the small scale, functions classically at
the device level. A primary purpose of this paper has
been to demonstrate that at THz frequencies, and rea-
sonable operating temperatures (˜4K), this technology
could be made fully quantum mechanical in nature, i.e.
at high enough SQUID ring and em oscillator frequencies
both can be treated as macroscopic quantum objects,
irrespective of any deeper description of the supercon-
ducting condensate in SQUID rings 40,41. This would
point to a great richness of potential applications. For
example, in the context of the results presented here, our
investigations may prove useful for the development of
frequency converters up to THz frequencies and beyond.
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More generally these results, and the theoretical descrip-
tions underlying them, may find use in the emerging fields
of quantum technology and quantum computation1,2,3,4.
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12 R. Whiteman, V. Schöllmann, M.J. Everitt, T.D. Clark,
R.J. Prance, H. Prance, J. Diggins, G. Buckling, and
J.F. Ralph, J. Phys. Condens. Matter 10, 9951 (1998).

13 R. Whiteman, T.D. Clark, R.J. Prance, H. Prance,
V. Schöllmann, J.F. Ralph, and M.J. Everitt, J. Mod. Opt.
45, 1175 (1998).

14 G. Schon and A. D. Zaikin Phys. Rep., 198, 237 (1990)
15 Y. Makhlin, G. Schon and A. Shnirman,

cond-mat/0011269
16 M. A. Kastner, Rev. Mod. Phys., 64, 849, (1992)
17 T. P. Spiller, T. D. Clark, R. J. Prance and A. Widom,

Prog. Low Temp. Phys., 13, 219 (1992)
18 H.Grabert, M.H.Devoret (Editors) ‘Single-charge tunnel-

ing’ NATO ASI series Vol 294 (Plenum, NY,1992)
19 K.Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am. B2, 458

(1985)
20 B. Yurke and S. L. McCall and J.R. Klauder Phys. Rev.

A33, 4033 (1986)
21 R. A Campos, B.E.A Saleh and M. C. Teich, Phys. Rev.

A40, 1371 (1989)
22 H. Fearn and R. Loudon. J. Opt. Soc. Am. B6, 971 (1989)
23 F. Singer R. A. Campos M. C. Teich and B. E. A. Saleh,

Quant. Opt. 2, 307 (1990)
24 A. Vourdas, Phys. Rev. A46, 442 (1992)
25 G. Lindbland, Commun. Math. Phys. 33, 305, (1973)
26 E. H. Lieb Bull. Am. Math. Soc. 81, 1 (1975)
27 A. Wehrl, Rev. Mod. Phys. 50, 221 (1978)
28 S. M. Barnett and S. J. D. Phoenix, Phys. Rev. A44, 535

(1991)
29 M.H. Devoret, D. Esteve, H. Grabert, G.L. Ingold, H.

Pothier, C. Urbina Phys. Rev. Lett. 64, 1824 (1990)
30 S.M. Girvin, L.I. Glazman, M. Jonson, D.R. Penn, M.D.

Stiles Phys. Rev. Lett. 64, 3183 (1990)
31 D.V. Averin, Yu.V. Nazarov, A.A. Odintsov, Physica

B165/166, 945 (1990)
32 K. Flensberg, S.M. Girvin, M. Jonson, D.R. Penn, M.D.

Stiles Z. Phys. B85, 395 (1991)
33 G.L. Ingold, P. Wyrowski, H. Grabert, Z. Phys. B85 ,

443 (1991)
34 G. Falci, V. Bubanja, G. Schon, Z. Phys. B85, 451 (1991)
35 A. Maassen van den Brink, A.A. Odintsov, P.A. Bobbert,

G. Schon, Z. Phys. B85, 459 (1991)
36 A.J. Leggett et al, Rev. Mod. Phys. 59 1 (1987)
37 R. Whiteman, T.D. Clark, R.J. Prance, H. Prance, V.
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